26,020 research outputs found

    Hot wire liquid level detector for cryogenic fluids Patent

    Get PDF
    Hot-wire liquid level detector for cryogenic propellant

    Jet noise from co-axial nozzles over a wide range of geometric and flow parameters

    Get PDF
    Free field pure jet noise data were taken for a large range of coaxial nozzle configurations. The core nozzles were circular (1 to 4 in. diameter) and plug types. The fan to core area ratio varied from 0.7 to 43.5, while the velocity ratio typically varied from 0 to 1. For most cases the two nozzles were coplanar but large axial extensions of either nozzle were also tested. Correlation of the data resulted in a simple procedure for estimating ambient temperature subsonic coaxial jet noise spectra over a wide range of geometric and flow parameters

    Trailing edge noise data with comparison to theory

    Get PDF
    The noise emission generated by the passage of a turbulent airstream over the trailing edge of a semi-infinite plate was measured over a large range of airstream velocity and plate geometry. The experiment was designed to validate trailing edge noise theories. The results show that the peak of the radiation pattern moves from an upstream to a downstream direction as the velocity increases. The measured radiation pattern of the noise was in excellent agreement with that predicted by the recent theory of Goldstein. As predicted, the pattern shape was independent of the nature of the turbulence producing the noise

    Experimental evidence for modifying the current physical model for ice accretion on aircraft surfaces

    Get PDF
    Closeup movies, still photographs, and other experimental data suggest that the current physical model for ice accretion needs significant modification. At aircraft airspeeds there was no flow of liquid over the surface of the ice after a short initial flow, even at barely subfreezing temperatures. Instead, there were very large stationary drops on the ice surface that lose water from their bottoms by freezing and replenish their liquid by catching the microscopic cloud droplets. This observation disagrees with the existing physical model, which assumes there is a thin liquid film continuously flowing over the ice surface. With no such flow, the freezing-fraction concept of the model fails when a mass balance is performed on the surface water. Rime ice does, as the model predicts, form when the air temperature is low enough to cause the cloud droplets to freeze almost immediately on impact. However, the characteristic shapes of horn-glaze ice or rime ice are primarily caused by the ice shape affecting the airflow locally and consequently the droplet catch and the resulting ice shape. Ice roughness greatly increases the heat transfer coefficient, stops the movement of drops along the surface, and may also affect the airflow initially and thereby the droplet catch. At high subreezing temperatures the initial flow and shedding of surface drops have a large effect on the ice shape. At the incipient freezing limit, no ice forms

    Lip noise generated by flow separation from nozzle surfaces

    Get PDF
    The results of a series of experiments, performed to investigate flow separation and classic lip noise and to aid in understanding aeroacoustic noise generation are presented. Several types of nozzle-lip configurations were used to study the high frequency noise generated by small regions of flow separation at the nozzle lip. These included coaxial nozzles, and circular and slot nozzles with splitter plates. The jet flow velocity was varied and far field noise was measured for all nozzle-lip geometries (coaxial and splitter plate). The effect of a velocity difference across the lip of the coaxial nozzle and the splitter plate on the far field noise was also measured. Finally, an effort was made to find means to reduce the high frequency noise caused by flow separation at the lip

    Epitope mapping using mRNA display and a unidirectional nested deletion library

    Get PDF
    In vitro selection targeting an anti-polyhistidine monoclonal antibody was performed using mRNA display with a random, unconstrained 27-mer peptide library. After six rounds of selection, epitope-like peptides were identified that contain two to five consecutive, internal histidines and are biased for arginine residues, without any other identifiable consensus. The epitope was further refined by constructing a high-complexity, unidirectional fragment library from the final selection pool. Selection by mRNA display minimized the dominant peptide from the original selection to a 15-residue functional sequence (peptide Cmin: RHDAGDHHHHHGVRQ; K-D = 38 nM). Other peptides recovered from the fragment library selection revealed a separate consensus motif (ARRXA) C-terminal to the histidine track. Kinetics measurements made by surface plasmon resonance, using purified Fab (antigen-binding fragment) to prevent avidity effects, demonstrate that the selected peptides bind with 10- to 75-fold higher affinities than a hexahistidine peptide. The highest affinity peptides (K-D approximate to 10 nM) encode both a short histidine track and the ARRXA motif, suggesting that the motif and other flanking residues make important contacts adjacent to the core polyhistidine-binding site and can contribute > 2.5 kcal/mol of binding free energy. The fragment library construction methodology described here is applicable to the development of high-complexity protein or cDNA expression libraries for the identification of protein-protein interaction domains

    Direct indication of particle size in fluidized beds

    Get PDF
    Differential pressure measurements indicate particle size and particle size distribution in fluidized beds. The technique is based on the relationship between bed particle size and the intensity and frequency of fluctuations. By measuring the fluctuations, an estimate of average particle size of the fluid-bed material can be made

    Preliminary study of the effect of the turbulent flow field around complex surfaces on their acoustic characteristics

    Get PDF
    Fundamental theories for noise generated by flow over surfaces exist for only a few simple configurations. The role of turbulence in noise generation by complex surfaces should be essentially the same as for simple configurations. Examination of simple-surface theories indicates that the spatial distributions of the mean velocity and turbulence properties are sufficient to define the noise emission. Measurements of these flow properties were made for a number of simple and complex surfaces. The configurations were selected because of their acoustic characteristics are quite different. The spatial distribution of the turbulent flow properties around the complex surfaces and approximate theory are used to locate and describe the noise sources, and to qualitatively explain the varied acoustic characteristics

    Reduced gravity liquid configuration simulator

    Get PDF
    Reduced gravity liquid configuration simulator to study propellant behavior in rocket fuel tank
    • …
    corecore